Wooden Propeller Forum  

Go Back   Wooden Propeller Forum > Design and Manufacturing > Design

Reply
 
Thread Tools Display Modes
Old 02-04-2006, 02:37 AM   #1
B Hosticka
Guest
 
Posts: n/a
Default Relation between Diameter, Pitch, RPM, and HP

Is there a standard formula for relating the Diameter, Pitch, RPM, and HP for a propeller? The best case would be to know RPM, HP, assume a Diameter and calculate a pitch. But any formula with these four variable will do since a little algebra can isolve for the unknown (1) parameter.

I guess that an efficiency would have to be assumed for this. Of course the number of blades is specified also. Lets say two.

Also what is done to make a test club instead of a propeller. HP and RPM would have to be the same as a real propeller but diameter would be smaller and thrust is a disadvantage. Low efficiency?

SO many questions.
  Reply With Quote
Old 05-25-2006, 06:20 PM   #2
Brian Mahoney
Guest
 
Posts: n/a
Default yes, it can get complex!

The clubs for test installations I think tried to replicate the angular momentum of the installed prop without the bothersome thrust and wind issues.

In terms of power/speed/pitch questions, one needs to also think in terms of 'swept area per unit time.' Scale modelers are aware of this... tiny scale flying propeller models need to oprerate at hideous RPMs—not the same RPMs as their namesakes—to meet the swept area requirement. (It is in proportion to the SQUARE of the radius... )

There is a long technical and theoretical passage in Graham White's "R-2800—Pratt and Whitney's Dependable Masterpiece" (©2001 Airlife Publisher, England) about the tendency of freely floating blades in a propellor to precess toward the fully feathered orientation, which has design implications for pitch actuators and hubs.

At some level, while an oversimplification, it is conceptually useful to think of the effective pitch of the blade as analogous to a car's gear- finer attach angles being like lower gears in a ground vehicle. One uses many rotationst of them to go a short distance, but that gives an engine 'good advantage' over the loads of accelerating. An aggressive pitch is like a high gear, and one can design too-high a gear fro any car or too-high a pitch for any plane, if not mindful of torque limits at the intended speed.

Hope this imagery is helpful.
  Reply With Quote
Reply

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump


All times are GMT -4. The time now is 03:59 PM.


Powered by vBulletin® Version 3.8.9 Beta 3
Copyright ©2000 - 2017, vBulletin Solutions, Inc.